On incompactness for chromatic number of graphs
نویسندگان
چکیده
منابع مشابه
On Incompactness for Chromatic Number of Graphs Sh1006
We deal with incompactness. Assume the existence of non-reflecting stationary set of cofinality κ. We prove that one can define a graph G whose chromatic number is > κ, while the chromatic number of every subgraph
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملOn the injective chromatic number of graphs
We define the concepts of an injective colouring and the injective chromatic number of a graph and give some upper and lower bounds in general, plus some exact values. We explore in particular the injective chromatic number of the hypercube and put it in the context of previous work on similar concepts, especially the theory of errorcorrecting codes. Finally, we give necessary and sufficient co...
متن کاملk-Chromatic Number of Graphs on Surfaces
A well-known result (Heawood [6], Ringel [11], Ringel and Youngs [10]) states that the maximum chromatic number of a graph embedded in a given surface S coincides with the size of the largest clique that can be embedded in S, and that this number can be expressed as a simple formula in the Eulerian genus of S. We study maximum chromatic number of k edge-disjoint graphs embedded in a surface. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Hungarica
سال: 2012
ISSN: 0236-5294,1588-2632
DOI: 10.1007/s10474-012-0287-3