On incompactness for chromatic number of graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Incompactness for Chromatic Number of Graphs Sh1006

We deal with incompactness. Assume the existence of non-reflecting stationary set of cofinality κ. We prove that one can define a graph G whose chromatic number is > κ, while the chromatic number of every subgraph

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

On the injective chromatic number of graphs

We define the concepts of an injective colouring and the injective chromatic number of a graph and give some upper and lower bounds in general, plus some exact values. We explore in particular the injective chromatic number of the hypercube and put it in the context of previous work on similar concepts, especially the theory of errorcorrecting codes. Finally, we give necessary and sufficient co...

متن کامل

k-Chromatic Number of Graphs on Surfaces

A well-known result (Heawood [6], Ringel [11], Ringel and Youngs [10]) states that the maximum chromatic number of a graph embedded in a given surface S coincides with the size of the largest clique that can be embedded in S, and that this number can be expressed as a simple formula in the Eulerian genus of S. We study maximum chromatic number of k edge-disjoint graphs embedded in a surface. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Hungarica

سال: 2012

ISSN: 0236-5294,1588-2632

DOI: 10.1007/s10474-012-0287-3